UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Paper 3 (Extended) October/November 2005 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials required. Candidate Name Centre Number Candidate Number

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

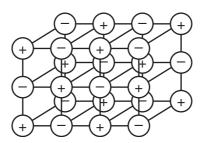
Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

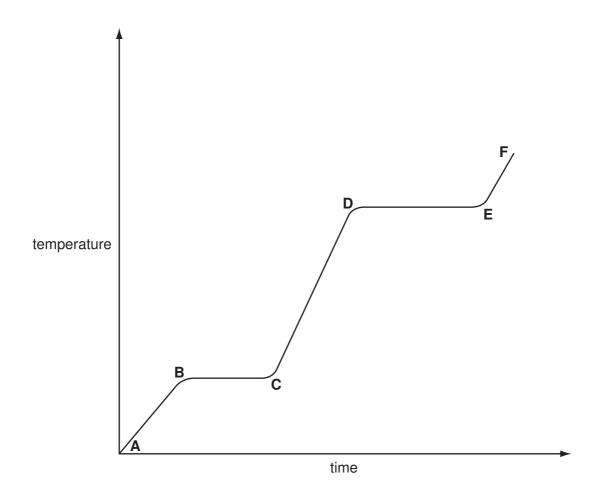
A copy of the Periodic Table is printed on page 16.


For Examin	er's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 14 printed pages and 2 blank page.

1 (a) The structure of a typical ionic compound is a regular arrangement of positive and negative ions.

For Examiner's Use



	(i)	What is the name of this regular arrangement of particles?	
			[1]
	(ii)	Give two physical properties of ionic compounds.	
			[2]
(b)		s are formed by electron loss or gain. The electron distribution of a magnesim is 2 + 8 + 2 and of a nitrogen atom is 2 + 5.	um
	(i)	Give the formula of the magnesium ion.	
			[1]
	(ii)	Give the formula of the nitride ion.	
			[1]
	(iii)	What is the formula of the ionic compound, magnesium nitride?	
			[1]
	(iv)	In this compound there is an ionic bond. Why are the two ions attracted to ear other?	ach
			[1]

2 Ethanoic acid is a colourless liquid at room temperature. It has the typical acid properties and forms compounds called ethanoates.

For Examiner's Use

(a) A pure sample of ethanoic acid is slowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below.

(i)	Name the change	that occurs in	n the region	D to	E.
`'					

[1

(ii) What would be the difference in the region **B** to **C** if an impure sample had been used?

[1]

(iii) Sketch on the graph how the line would continue if the acid was heated to a higher temperature. [1]

(iv)	complete the following table that compares the separation and movement of the	he
	nolecules in regions C to D with those in E to F.	

	C to D	E to F
separation (distance between particles)		
movement of particles	random and slow	
Can particles move apart to fill any volume?		

[5]

(b)	Complete the	e word	equations	for the	reactions	of	ethanoic	acid
-----	--------------	--------	-----------	---------	-----------	----	----------	------

calcium	+	ethanoic acid	→
			+

_	othonoic soid	zinc ethanoate	_	water	[2]
 -	ethanoic acid →	zinc emanoate	_	water	[4]

(c) Write the symbol equation for the reaction between ethanoic acid and sodium hydroxide.

[2]

3 Reversible reactions can come to equilibrium. They have both a forward and a backward reaction.

For Examiner's Use

(a) When water is added to an acidic solution of bismuth(III) chloride, a white precipitate forms and the mixture slowly goes cloudy.

(i)	Explain why the rate of the forward reaction decreases with time.	
		 [2]
(ii)	Why does the rate of the backward reaction increase with time?	
		 . [1]
(iii)	After some time why does the appearance of the mixture remain unchanged?	ניז
(111 <i>)</i>	Arter some time why does the appearance of the mixture remain unchanged:	
		[2]
(iv)	When a few drops of concentrated hydrochloric acid are added to the cloumixture, it changes to a colourless solution. Suggest an explanation.	Jdy
		[2]

(b) Both of the following reactions are reversible.

For
Examiner's
HSA

(i)	Suggest a reason why an increase in pressure does not affect the position equilibrium for reaction 1.	of
		1]
(ii)	What effect would an increase in pressure have on the position of equilibrium freaction 2? Give a reason for your answer.	or

The alcohols form a homologous series. The first member is methanol and the fourth is butanol.
CH_3-OH $CH_3-CH_2-CH_2-OH$ methanol butanol
(a) (i) Give two general characteristics of a homologous series.
[2]
(ii) Calculate the mass of one mole of the C_8 alcohol.
[2]
(b) Give the name and structural formula of the third member of this series.
name [1]
structural formula
[1]
(c) The structural formula of the fifth member, pentan-1-ol, is drawn below.
$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH$
(i) Draw the structural formula of an isomer of this alcohol.

[1]

For Examiner's Use

4

(ii)	Predict	the names of the product(s) formed when pentan-1-ol	
	•	reacts with an excess of oxygen,	
		and	[1]
	•	is dehydrated to form an alkene,	
			[1]
	•	is oxidised by acidified potassium dichromate(VI).	
			[1]

© UCLES 2005 0620/03/O/N/05

Strontium and zinc are both metals with a valency of 2. Strontium is more reactive than zinc. Its chemistry is similar to that of calcium.								
(a) (i)	a) (i) Complete the following table that shows the number of protons, electrons and neutrons in each particle.							
	particle	protons	electrons	neutrons				
	⁸⁸ Sr							
	⁹⁰ Sr							
	⁶⁵ Zn ²⁺				[2]			
					[3]			
(ii)	Explain why ⁸⁸ Sr	and ⁹⁰ Sr are isotope	es.					
					[1]			
					[.]			
(iii) Complete the electron distribution of an atom of strontium.								
	2 +	8 +	18 + <u></u>	+	[1]			
(b) The	e major ore of zind	is zinc blende, ZnS	5.					
(i) Describe how zinc is extracted from zinc blende.								
					[2]			
(ii)	Give a use of zir	c.						
					[1]			

5

(c)		e major ore of strontium is its carbonate, $SrCO_3$. Strontium is extracted by to ctrolysis of its molten chloride.	the
	(i)	Name the reagent that will react with the carbonate to form the chloride.	
			[1]
	(ii)	The electrolysis of molten strontium chloride produces strontium metal a chlorine. Write ionic equations for the reactions at the electrodes.	ınd
		negative electrode (cathode)	
		positive electrode (anode)	[2]
((iii)	One of the products of the electrolysis of concentrated aqueous strontium chloris chlorine. Name the other two.	ide
			[2]
(d)	Bot	h metals react with water.	
	(i)	Write a word equation for the reaction of zinc and water and state the reaction conditions.	ion
		word equation	[1]
		conditions	[2]
	(ii)	Write an equation for the reaction of strontium with water and give the reaction condition.	ion
		equation	[2]
		condition	[1]

6 (a) The following method is used to make crystals of hydrated nickel sulphate.

For Examiner's Use

An excess of nickel carbonate, 12.0~g, was added to $40~cm^3$ of sulphuric acid, $2.0~mol/dm^3$. The unreacted nickel carbonate was filtered off and the filtrate evaporated to obtain the crystals.

$$NiCO_3 + H_2SO_4 \longrightarrow NiSO_4 + CO_2 + H_2O$$

 $NiSO_4 + 7H_2O \longrightarrow NiSO_4.7H_2O$

Mass of one mole of NiSO₄.7H₂O = 281 g Mass of one mole of NiCO₃ = 119 g

				_		
7	i۱	Calculate the	mace of	funraactad	nickal	carbonata
U	.,	Calculate the	, เมลงง บ	unicacieu	HICKEI	carbonate.

Number of moles of H_2SO_4 in 40 cm³ of 2.0 mol/dm³ acid = 0.08

Number of moles of NiCO₃ reacted =

Mass of nickel carbonate reacted = g

Mass of unreacted nickel carbonate = _____ g [3]

(ii) The experiment produced 10.4 g of hydrated nickel sulphate. Calculate the percentage yield.

The maximum number of moles of NiSO₄.7H₂O that could be formed =

The maximum mass of NiSO₄.7H₂O that could be formed = g

The percentage yield = _______% [3]

- **(b)** In the above method, a soluble salt was prepared by neutralising an acid with an insoluble base. Other salts have to be made by different methods.
 - (i) Give a brief description of how the soluble salt, rubidium sulphate could be made from the soluble base, rubidium hydroxide.

[3]

(ii)	Suggest a method of making the insoluble salt, calcium fluoride.
	ro1
	131

	909, Haber discovered that ni d of ammonia was 8%.	trogen and hydroge	en would react to form ammonia.	The
	$N_2(g) + 3H_2(g) \rightleftharpoons 2N$	NH ₃ (g) the forwar	d reaction is exothermic	
	catalyst platin temperature 6 pressure 200	00 °C		
(a)	Describe how hydrogen is obt	ained for the moder	n process.	
				[2]
(b)	(i) What is the catalyst in the	e modern process?		
				[1]
	(ii) Explain why the modern yield of 15%.	process, which use	es a lower temperature, has a hi	gher
				[2]
(c)	(i) Complete the following to reaction between nitroger		the bond breaking and forming in orm ammonia.	the
	bonds	energy change /kJ	exothermic or endothermic	
	1 mole of N ≡ N broken	+945		
	3 moles of broken	+1308		
	6 moles of N – H formed	-2328		
	(ii) Explain, using the above	data, why the forwa	rd reaction is exothermic.	[3]
				[2]

7

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

	0	4 Helium	Neon Neon Argon	84 Kr ypton	131 Xe Xenon	Rn Radon		175 Lu Lutetium 71	Lr Lawrencium 103
	II/	24	19 Fluorine 10 35.5 C C C C C C C C C C C C C C C C C C	80 Bromine 36 X	127 I lodine 54	At Astatine 85		173 Yb Ytterbium 70	
		-		88	53				vium No.
	>		16 O O Sygen 8 32 Suphur 16	Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thullum	Md Mendelevium 101
	>		Nitrogen 7 Nitrogen 7 Nitrogen 7 115 Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bis Bismuth		167 Er Erbium 68	Fm Fermium
	2		12 Carbon 6 Silicon 14	73 Ge Germanium	Sn Iin	207 Pb Lead		165 Ho Holmium 67	Esteinium 99
	=		11 B Boron 5 A1 Auminium 13	70 Ga Gallium 31	Indium 49	204 T 1 Thailium		162 Dy Dysprosium 66	Californium
				65 Zn 2inc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium Se
Group				59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Patinum 78		152 Eu Europium 63	Am Americium 95
ซ้				59 Cob Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		Samarium 62	Pu Plutonium 94
		T Hydrogen		56 Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium
				52 Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	Nobium 41	181 Ta Tantatum		140 Cer ium 58	232 Th Thorium 90
				48 T Itanium	91 Zr Zirconium 40	178 Hf Hafnium 72		1	nic mass Ibol nic) number
				Scandium 21	89 ×	139 La Lanthanum 57 *	227 AC Actinium 89	series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Magnesium 12	40 Cal cium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series	в Х
	-		23 Sodium 11	39 K	Rb Rubidium 37	Caesium	Fr Francium 87	*58-71 L 90-103 <i>i</i>	Key

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).